Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613249

RESUMO

Coastal wetlands play an important role in regulating atmospheric carbon dioxide (CO2) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands. The natural coastal wetlands have the average net ecosystem exchange of CO2 (NEE) of -577 g C m-2 year-1, with -821 g C m-2 year-1 for mangrove forests and -430 g C m-2 year-1 for salt marshes. There are pronounced latitudinal patterns for carbon dioxide exchange of natural coastal wetlands: NEE increased whereas gross primary production (GPP) and respiration of ecosystem decreased with increasing latitude. Distinct environmental factors drive annual variations of GPP between mangroves and salt marshes; temperature was the dominant controlling factor in salt marshes, while temperature, precipitation, and solar radiation were co-dominant in mangroves. Meanwhile, both anthropogenic reclamation and restoration had substantial effects on coastal wetland carbon fluxes, and the effect of the anthropogenic perturbation in mangroves was more extensive than that in salt marshes. Furthermore, from 1980 to 2020, anthropogenic reclamation of China's coastal wetlands caused a carbon loss of ~3720 Gg C, while the mangrove restoration project during the period of 2021-2025 may switch restored coastal wetlands from a carbon source to carbon sink with a net carbon gain of 73 Gg C. The comparison of carbon fluxes among these coastal wetlands can improve our understanding of how anthropogenic perturbation can affect the potentials of coastal blue carbon in China, which has implications for informing conservation and restoration strategies and efforts of coastal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Dióxido de Carbono , Ciclo do Carbono , China
2.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417516

RESUMO

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Compostos de Amônio/análise , Isótopos de Nitrogênio/análise , Emissões de Veículos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis e Gotículas Respiratórios , Amônia/análise , Material Particulado/análise , China
3.
Microbiol Spectr ; 10(5): e0121022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094197

RESUMO

Dengue virus (DENV) is the most globally prevalent member of the genus Flavivirus in the family Flaviviridae, which can be classified into four serotypes. Historically, molecular epidemiological studies of DENV depended on E gene sequencing. The development of next-generation sequencing (NGS) allowed its application to viral whole-genome sequencing (WGS). In this study, we report the improvement of the existing WGS process for DENV by optimizing the primer design procedure, designing serotype-specific primer panels and reducing the sizes of amplicons. A total of 31 DENV-positive serum samples belonging to 4 serotypes and 9 genotypes of DENV were involved in the validation of the primer panels. The threshold cycle (CT) values of these samples ranged from 23.91 to 35.11. The validation results showed that the length of consensus sequences generated at a coverage depth of 20× or more ranged from 10,370 to 10,672 bp, with 100.00% coverage of the open reading frames and 97.34% to 99.52% coverage of the DENV genome. The amplification efficiency varied across amplicons, genotypes, and serotypes of DENVs. These results indicate that the serotype-specific primer panels allow users to obtain the whole genome of DENV directly from clinical samples, providing a universal, rapid, and effective tool for the integration of genomics with dengue surveillance. IMPORTANCE Dengue virus (DENV) is becoming the most globally prevalent arbovirus. The number of people living under the threat of DENV is increasing year by year. With the development of next-generation sequencing (NGS) technology, whole-genome sequencing (WGS) has been more and more widely used in infectious disease surveillance and molecular epidemiological studies. DENV population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of the DENV genome at the molecular level, which demands universal primer panels and combination with NGS platforms. Multiplex PCR with a short-amplicon approach proved superior for amplifying viral genomes from clinical samples, particularly when the viral RNA was present at low concentrations. Additionally, DENV are known for their genetic diversity within serotype groups and geographical regions, so the primer panels we designed focused on universality, which would be useful in future local DENV outbreaks.


Assuntos
Vírus da Dengue , Dengue , Humanos , Sorogrupo , Vírus da Dengue/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Multiplex , Genoma Viral , Genótipo , Dengue/epidemiologia , Dengue/genética , Filogenia
4.
Emerg Microbes Infect ; 11(1): 306-309, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34983331

RESUMO

Since the SARS-CoV-2 Omicron variant was first reported from South Africa, it has rapidly spread in over 100 countries. Only two cases infected by the Omicron variant were recently identified in China. The one case in Guangzhou has a relatively long incubation time and mild symptoms. Analysis of the complete viral genome sequence shows three missing Omicron unique mutations and one additional mutation in the newly characterized genome. These unique mutations may be related to the clinical presentation in this case.


Assuntos
COVID-19 , SARS-CoV-2 , China , Humanos , África do Sul
5.
Virol J ; 18(1): 151, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281586

RESUMO

BACKGROUND: Zika virus is becoming one of the most widely transmitted arboviruses in the world. Development of antiviral inhibitor and vaccine requires an experimental system that allows rapid monitoring of the virus infection. This is achievable with a reverse genetic system. In this study, we constructed an infectious clone for Zika virus that stably expressing EGFP. METHODS: A PCR-mediated recombination approach was used to assemble the full-length Zika virus genome containing the CMV promoter, intron, EGFP, hepatitis delta virus ribozyme, and SV40 terminator sequence for cloning into the pBAC11 vector to produce recombinant pBAC-ZIKA-EGFP. ZIKA-EGFP virus was rescued by transfection of pBAC-ZIKA-EGFP into 293T cells. The characterization of ZIKA-EGFP virus was determined by qPCR, plaque assay, CCK-8, and Western blot. RESULTS: Rescued ZIKA-EGFP virus exhibited stable replication for at least five generations in tissue culture. ZIKA-EGFP can effectively infect C6/36, SH-SY5Y and Vero cells, and cause cytopathic effects on SH-SY5Y and Vero cells. The inhibition of ZIKA-EGFP by NF-κB inhibitor, caffeic acid phenethyl ester was observed by fluorescence microscopy. CONCLUSION: Our results suggested that Zika virus infectious clone with an EGFP marker retained it infectivity as wide-type Zika virus which could be used for drugs screening.


Assuntos
Efeito Citopatogênico Viral , Zika virus , Animais , Chlorocebus aethiops , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células Vero , Zika virus/genética
6.
IEEE Trans Neural Netw Learn Syst ; 32(12): 5445-5455, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33667168

RESUMO

Learning to adapt to a series of different goals in visual navigation is challenging. In this work, we present a model-embedded actor-critic architecture for the multigoal visual navigation task. To enhance the task cooperation in multigoal learning, we introduce two new designs to the reinforcement learning scheme: inverse dynamics model (InvDM) and multigoal colearning (MgCl). Specifically, InvDM is proposed to capture the navigation-relevant association between state and goal and provide additional training signals to relieve the sparse reward issue. MgCl aims at improving the sample efficiency and supports the agent to learn from unintentional positive experiences. Besides, to further improve the scene generalization capability of the agent, we present an enhanced navigation model that consists of two self-supervised auxiliary task modules. The first module, which is named path closed-loop detection, helps to understand whether the state has been experienced. The second one, namely the state-target matching module, tries to figure out the difference between state and goal. Extensive results on the interactive platform AI2-THOR demonstrate that the agent trained with the proposed method converges faster than state-of-the-art methods while owning good generalization capability. The video demonstration is available at https://vsislab.github.io/mgvn.

7.
J Biomater Sci Polym Ed ; 32(2): 248-265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975477

RESUMO

Bone marrow mesenchymal stem cells (BMSCs), as seed cells, have played an important role in bone defect repair. However, efficiently amplifying and inducing BMSCs in vitro or vivo remains an urgent problem to be solved. Electrical stimulation has been beneficial to the proliferation and differentiation of BMSCs, but current electrical stimulation methods have a critical disadvantage in that they usually burn the skin. g-C3N4/rGO, a new photosensitive material, can produce photocurrent under natural light irradiation, thus reducing energy consumption. Our purpose was to explore whether this photocurrent can promote the proliferation and differentiation of BMSCs. g-C3N4/rGO synthesised under high temperature and pressure had negligible cytotoxicity as confirmed by methyl thiazolyl tetrazolium to BMSCs. Better osteogenesis was found in the blue light material group than in the light-shielding material group, exhibited by alizarin red staining, alkaline phosphatase activity, Western-Blot, and RT-qPCR. Animal experiments showed that the bone repair potential of the material group was significantly higher than that of the non-material group. Overall, we conclude that g-C3N4/rGO is a new non-toxic photosensitive material which can rapidly induce BMSCs into osteoblasts, accelerating bone regeneration and providing us with a feasible method of rapid bone repair.


Assuntos
Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Grafite , Osteogênese
8.
Virol Sin ; 36(3): 510-520, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33185862

RESUMO

Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells. These cells are the primary components of the blood-brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine (PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1 (HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Dioxolanos , Células Endoteliais , Humanos , Estresse Oxidativo , Regulação para Cima , Células Vero , Replicação Viral , Infecção por Zika virus/tratamento farmacológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-31880550

RESUMO

In this paper, we propose a novel deep neural network based attention model to learn the representative local regions from a video sequence for person re-identification. Specifically, we propose a multi-scale spatial-temporal attention (MSTA) model to measure the regions of each frame in different scales from the perspective of whole video sequence. Compared to traditional temporal attention models, MSTA focuses on exploiting the importance of local regions of each frame to the whole video representation in both spatial and temporal domains. A new training strategy is designed for the proposed model by incorporating the image-to-image mode with the videoto- video mode. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed model over state-ofthe- art methods.

10.
Viruses ; 11(5)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121933

RESUMO

Vimentin (VIM) is a surface receptor for enterovirus-A71, mediating the initial binding and subsequent increase in EV-A71 infectivity. The caspid protein VP1 variation, A289T, is reportedly closely associated with less severe central nervous system (CNS) infections in humans. However, it is unclear whether VIM is associated with a reduction in CNS infections of EV-A71 in the presence of A289T. We investigated whether VIM served as a receptor for EV-A71 in the presence of an A298T substitution in VP1. EV-A71-289A and EV-A71-289T were used to infect human rhabdomyosarcoma cells, control human brain microvascular endothelial cells (HBMECs), and VIM-knockout (KO) HBMECs and inoculated BALB/c mice, SV129 mice, and VIM-KO SV129 mice. Furthermore, we cloned VP1-289A-Flag and VP1-289T-Flag proteins for co-immunoprecipitation analysis. Analysis of viral function revealed that the capacity of viral attachment, replication, and protein synthesis and secretion decreased in HBMECs during an EV-A71-289A infection, the infectivity being higher than that of EV-A71-289T upon VIM-KO. Histopathological and immunohistochemical analyses of brain tissue revealed that cerebral cortical damage was more extensive in EV-A71-289A than in EV-A71-289T infections in control SV129 mice; however, no significant difference was observed upon VIM-KO. Co-immunoprecipitation analysis revealed an interaction between VP1 and VIM, which was attenuated in VP1 harboring A289T; however, this attenuation was reversed by VIM (1-58) peptide. The A289T variation of VP1 specifically decreased the virulence of EV-A71 in HBMECs, and the attenuated interaction between VP1 harboring the A289T variation and VIM essentially decreased the CNS infectivity of EV-A71 in vitro and vivo.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções do Sistema Nervoso Central/metabolismo , Infecções do Sistema Nervoso Central/virologia , Enterovirus Humano A/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno , Vimentina/metabolismo , Animais , Biomarcadores , Linhagem Celular , Gerenciamento Clínico , Enterovirus Humano A/efeitos dos fármacos , Variação Genética , Humanos , Camundongos , Virulência
11.
IEEE Trans Neural Netw Learn Syst ; 30(12): 3847-3852, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30872245

RESUMO

Video-based person re-identification (re-id) matches two tracks of persons from different cameras. Features are extracted from the images of a sequence and then aggregated as a track feature. Compared to existing works that aggregate frame features by simply averaging them or using temporal models such as recurrent neural networks, we propose an intelligent feature aggregate method based on reinforcement learning. Specifically, we train an agent to determine which frames in the sequence should be abandoned in the aggregation, which can be treated as a decision making process. By this way, the proposed method avoids introducing noisy information of the sequence and retains these valuable frames when generating a track feature. On benchmark data sets, experimental results show that our method can boost the re-id accuracy obviously based on the state-of-the-art models.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Reforço Psicológico , Gravação em Vídeo/métodos , Humanos
12.
Virol Sin ; 33(3): 270-277, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29931514

RESUMO

The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 101 to 108 copy/µL, with a standard curve R2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/µL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 101-104 copy/µL and was able to detect concentrations as low as 1 copy/µL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 101 copy/µL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Zika virus/genética , Zika virus/isolamento & purificação , Humanos
13.
Viruses ; 9(7)2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661429

RESUMO

Since 2015, 84 countries and territories reported evidence of vector-borne Zika Virus (ZIKV) transmission. The World Health Organization (WHO) declared that ZIKV and associated consequences especially the neurological autoimmune disorder Guillain-Barré syndrome (GBS) and microcephaly will remain a significant enduring public health challenge requiring intense action. We apply a standardization of the multi-subcutaneous dorsal inoculation method to systematically summarize clinical neurological manifestation, viral distribution, and tissue damage during the progress of viremia and systemic spread in suckling mouse models. We found that C57BL/6 and Kunming mice (KM) both showed remarkable and uniform neurologic manifestations. C57BL/6 owned the highest susceptibility and pathogenicity to the nervous system, referred to as movement disorders, with 100% incidence, while KM was an economic model for a Chinese study characterized by lower limb weakness with 62% morbidity. Slight yellow extraocular exudates were observed in BALB/c, suggesting the association with similar ocular findings to those of clinical cases. The virus distribution and pathological changes in the sera, brains, livers, kidneys, spleens, and testes during disease progression had strong regularity and uniformity, demonstrating the effectiveness and plasticity of the animal models. The successful establishment of these animal models will be conducive to expound the pathogenic mechanism of GBS.


Assuntos
Infecções do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Infecção por Zika virus/patologia , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Suscetibilidade a Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
Tree Physiol ; 37(1): 82-97, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28173596

RESUMO

Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.


Assuntos
Antibiose , Avicennia/anatomia & histologia , Avicennia/fisiologia , Cadeia Alimentar , Herbivoria , Mariposas/fisiologia , Animais , Antioxidantes/metabolismo , Avicennia/genética , Expressão Gênica , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
15.
Glob Chang Biol ; 23(3): 1180-1198, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27400026

RESUMO

Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2 ) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta-analysis to compare ecosystem CO2 fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site-years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re ), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided large CO2 sinks, while inland wetlands provided small CO2 sinks or were nearly CO2 neutral. The annual CO2 sink strength was 93.15 and 208.37 g C m-2 for inland and coastal wetlands, respectively. Annual CO2 fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined, MAT and MAP explained 71%, 54%, and 57% of the variations in GPP, Re , and NEP, respectively. The CO2 fluxes of wetlands were also related to leaf area index (LAI). The CO2 fluxes also varied with water table depth (WTD), although the effects of WTD were not statistically significant. NEP was jointly determined by GPP and Re for both inland and coastal wetlands. However, the NEP/Re and NEP/GPP ratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting of CO2 fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks.


Assuntos
Mudança Climática , Ecossistema , Áreas Alagadas , Dióxido de Carbono , Clima
16.
Springerplus ; 5(1): 1942, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933232

RESUMO

BACKGROUND: Dengue is one of the most important emerging diseases of humans, with no preventive vaccines or antiviral cures available currently. In 2014, the Southeast Asian region experienced an unprecedented outbreak of dengue, especially in Guangdong, China. RESULTS: The nucleotide sequences of the E gene from 23 patients sera of dengue virus type 1 (DENV-1) from Guangzhou, China, were determined. One isolate that was recovered from a patient with serious liver damage was designated GZ02. The whole genome sequence of GZ02 was amplified, and confocal microscopy and plaque reduction neutralization test were performed to investigate the replication kinetics in liver L02 cells. In the study, assembly and genetic comparisons showed 11 of those E gene nucleotide sequences were absolutely accordant, and the nucleic acid sequence divergence among the other strains had no marked difference. CONCLUSIONS: Phylogenetic analysis based on the E gene indicated that the 23 new strains were closely related to strains from Malaysia or Singapore. Two different genotypes (genotype I and III) of DENV-1 were co-circulating in Guangdong, Malaysia, and Singapore from 2013 to 2014. However, no recombination event was found after 2005 between DENV strains from Guangdong and Malaysia or Singapore. GZ02 had a significant replicative advantage over DG14 and the DV1 standard strain. Importation of DENV-1 from Southeast Asian countries may have been an important contributing factor to the 2014 outbreak in Guangdong.

17.
PLoS One ; 11(1): e0146199, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727205

RESUMO

Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.


Assuntos
Espécies Introduzidas , Nitrogênio/farmacologia , Óxido Nitroso/análise , Poaceae/fisiologia , Rhizophoraceae , Solo/química , Áreas Alagadas , China , Ciclo do Nitrogênio , Rhizophoraceae/metabolismo , Salinidade , Água do Mar
18.
ScientificWorldJournal ; 2014: 943697, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133267

RESUMO

The eddy flux data with field records of tidal water inundation depths of the year 2010 from two mangroves forests in southern China were analyzed to investigate the tidal effect on mangrove carbon cycle. We compared the net ecosystem exchange (NEE) and its responses to light and temperature, respectively, between spring tide and neap tide inundation periods. For the most time of the year 2010, higher daytime NEE values were found during spring tides than during neap tides at both study sites. Regression analysis of daytime NEE to photosynthetically active radiation (PAR) using the Landsberg model showed increased sensitivity of NEE to PAR with higher maximum photosynthetic rate during spring tides than neap tides. In contrast, the light compensation points acquired from the regression function of the Landsberg model were smaller during spring tides than neap tides in most months. The dependence of nighttime NEE on soil temperature was lower under spring tide than under neap tides. All these results above indicated that ecosystem carbon uptake rates of mangrove forests were strengthened, while ecosystem respirations were inhibited during spring tides in comparison with those during neap tides, which needs to be considered in modeling mangrove ecosystem carbon cycle under future sea level rise scenarios.


Assuntos
Pegada de Carbono , Florestas , Luz , Estações do Ano , Temperatura , Ondas de Maré , Áreas Alagadas , Modelos Biológicos , Rhizophoraceae/fisiologia , Clima Tropical
19.
PLoS One ; 9(3): e91238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618793

RESUMO

In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.


Assuntos
Carbono/análise , Florestas , Rhizophoraceae , Traqueófitas , Árvores , Biomassa , China , Ecossistema , Geografia , Sedimentos Geológicos , Solo/química , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...